
Kotlin Multiplatform
BY MUHAMMED SAFIUL AZAM
MOBILE APPLICATION DEVELOPER
EMAIL: MUHAMMED.SAFIUL.AZAM@GMAIL.COM

Today’s goal

u iOS
u Android

q Optimize development.
q Share common libraries.
q Capitalize knowledge.

1

What makes a great mobile
application?

u Smooth interactive and intuitive experiences.
u Looks and feels like integrated part of the device.
u Utilize users’ existing knowledge on devices’ interfaces.
u Take full advantages of devices’ native features.
u Of course: runs fast + less bugs.

2

Don’t judge a book by it’s cover?

u YES!! We do judge by cover. 😄
u We judge a mobile application by it’s UI/UX. It doesn’t matter how it

functions inside or how awesome is our architecture!

3

How can we make a great mobile
application?

u Provide native UX design.
u Use native UI tools and libraries.
u Business logics and etc. ⟶ Native or other technologies.
u Summery: Don’t mess with UI/UX design. Use native tools and

libraries for developing native experiences.

4

What can we share among
platforms?

u Keep native UI/UX design.
u Share business logics and more without interrupting native UI/UX

design.

5

No Yes
UI Architectures
UX Networks (HTTP)

Platform specific things Databases (SQL)
Data Models + Serializations

Threads / Coroutines
Events / Dispatchers

…

What can we achieve by sharing
among platforms?

u Less codes = less bugs.
u Reduce confusions on specifications

(among platforms).
u Reduces development time.

Off the record 😄
u Feeling not alone when things go down.
u iOS developers finally can point to Android developers.

6

Welcome to
Kotlin Multiplatform

😄😃😍

7

What is Kotlin Multiplatform?

u Experimental feature in Kotlin 1.2 and 1.3 (until now).
u Complies code and generate libraries according to platforms.
u Allow us to access libraries like simply we access other libraries.
u Allow us to share business logic, connectivity and more.
u Android application ⟵ Multiplatform Libraries ⟶ iOS application.

8

Under same project (optional)

Very very famous quote:
“Free libraries don’t bring happiness but it helps.”
-- Albert Einstein

Kotlin/Native

u Technology for compiling Kotlin
code to native binaries.

u Supports two-way interoperability
with native platforms.
v Compiler create libraries and

frameworks (swift / objective-c) for
platforms.

v Supports interoperability to use
existing libraries and frameworks (
swift / objective-c) directly from
Kotlin/Native.

9
iOS frameworks in Kotlin/Native

... many more.

Common libraries?

Kotlin Vendor Essential
Kotlinx.Coroutines JetBrains Coroutines

SQLDelight Square Database
Kotlinx.Serialization JetBrains Serialization

Ktor.io JetBrains HTTP / Server / Client
… … …

10

u Most of the mobile applications use some essential libraries to
function.

u Community actors already provide most of those essential libraries
which are useable across platforms.

Mechanism: expect and actual

u Common codes to depend on platform-specific declarations.
u Common module can define expected declarations.
u Platform module can provide actual declarations corresponding to

the expected ones.

11

@ThreadLocal
actual object CouroutineUtils {

// Dispatcher.
@SharedImmutable
actual val DISPATCHER: CoroutineDispatcher = NsQueueDispatcher(

dispatch_get_main_queue()
)

internal class NsQueueDispatcher(private val dispatchQueue: dispatch_queue_t) : CoroutineDispatcher() {
override fun dispatch(context: CoroutineContext, block: Runnable) {

dispatch_async(dispatchQueue) {
block.run()

}
}

}
}

expect object CouroutineUtils {
// Dispatcher.
val DISPATCHER: CoroutineDispatcher

}

actual object CouroutineUtils {
// Dispatcher.
actual val DISPATCHER: CoroutineDispatcher = Dispatchers.Main

}

actual (Android)
expect (Common)

actual (iOS)

It’s written
in Kotlin ;)

12

No platform-specific code = no expect / actual
Simply write common codes and use! 😃

13

class DatabaseManager : AddOn(), IDatabaseManager {

private val mVelibDB: VelibDB by lazy {
VelibDB(DatabaseUtils.VELIB_DB_DRIVER!!)

}

private val mVelibDatabase: IVelibDatabase by lazy {
val velibDatabase = VelibDatabase(mVelibDB)
velibDatabase.addAddOns(getAddOns())
velibDatabase

}

override fun getVelibDatabase(): IVelibDatabase {
return mVelibDatabase

}
}

Platform independent codes?

Project hierarchy 14

Android
application

Common

Android platform
specific codes

iOS platform
specific codes

Common
codes

Gradle (Common)

What to put where?

u Declaring class, object, etc. with expect require their actual
definition for platforms.

u Class, object, etc. with expect contain only signatures.
u Class, object, etc. with actual can contain extra methods.

15

Class / Object / etc. Package / Common
Platform independent commonMain

expect declaration commonMain
actual (Android) definition androidMain

actual (iOS) definition iosMain

iOS framework (libraries) 16

CommonKit

CommonKit

Gradle
(Common)

Project Settings
(iOS)

Common libraries in Swift 17

CommonKit

CommonKit

Libraries from
Common

Common libraries in Kotlin 18

Libraries from
Common

Common

Just import
libraries with

package
names.

Namespace in Swift?

u Namespaces are implicit in Swift. Classes, etc are implicitly scoped
by modules / frameworks.

u Kotlin uses underscore “_” to solve classes with same names which
seemingly random.

u Solution: Don’t create classes with same names or use typealias.

19

Kotlin
com.x.y.z.Animal
com.a.b.c.Animal
com.a.b.c.Giraffe

Swift
CommonKit.Animal
CommonKit.Animal_
CommonKit.Giraffe

After Compilation
⟶

Me you… no… you me… 20

Calling VelibService from Android (Kotlin) application

Calling VelibService from iOS (Swift) application

Example 🤓

u Velib Stations:
https://github.com/muhammedsafiulazam/velibstations

u Common libraries:
v Domains: Event, AddOn (Architecture), Service, Database, Location,

Coroutine, Model, Serializer, etc.

u Platform specific libraries:
v Domains - Android: View (Activity), ViewModel, etc.
v Domains - iOS: View (UIViewController), ViewModel, etc.

21

Demo / Velib Stations 22

Android Application iOS Application

Findings?

u Kotlin’s objects in Swift ⟶ Use @ThreadLocal and
@SharedImmutable during declarations.
https://kotlinlang.org/docs/reference/native/immutability.html

u If Kotlin’s objects are derived from classes with mutable
properties, Swift doesn’t allow access to those mutable properties
(runtime error).

u iOS ⟶ KotlinxSerializer require mappers for data models and
serializers manually (once and easy).

u Android ⟶ kotlinx.serialization.Serializable is not derived from
java.io.Serializable. So it’s not possible to put in intent directly.

23

Oh dayum

u Mixing Kotlin and Objective-C supertypes is not supported yet.
https://kotlinlang.org/docs/reference/native/objc_interop.html

24

Note: These are my observations until now. I’m trying to find out
better solutions of these issues. 😄

👍

👎

IBaseView ⟶ Interface written in Kotlin.
UIViewController ⟶ Class written in Objective-C.

Kotlin singletons (objects) 25

References

u https://github.com/muhammedsafiulazam/velibstations
u https://kotlinlang.org/docs/reference/multiplatform.html
u https://www.raywenderlich.com/1022411-kotlin-multiplatform-

project-for-android-and-ios-getting-started
u https://github.com/Kotlin/kotlinx.coroutines
u https://github.com/Kotlin/kotlinx.serialization
u https://github.com/cashapp/sqldelight
u https://github.com/ktorio/ktor

26

What’s next? 27

Kotlin Multiplatform
Hands-on

(Hands-on explanations on Velib Stations’ codes)

Questions? 28

Wake UP!?!
🥺😮😄

